Frictions to intranational investment

NOITS 2021 Reykjavik - October 1, 2021

Inga Heiland, ${ }^{1}$ Julian Hinz ${ }^{2}$
${ }^{1}$ Statistics Norway and University of Oslo
${ }^{2}$ Bielefeld University and Kiel Institute for the World Economy

What this paper is about

- Strong gravity-like forces for intranational investment
- Exhaustive dataset and structural model
- (Plan to) run counterfactuals: Infrastructure improvements and spatial distribution of investments

Road map

1. Data and stylized facts
2. Related literature and background
3. Theory
4. Model calibration
5. Outlook: Counterfactuals

Stylized facts

cre

Financial Asset Holdings

- Norwegian equity ownership data collected by the country's tax authority
- Number of shares and their nominal value by owner, issuer
- Annual data for years between 2004 to 2017
- around 310,000 firms and around 1.02 million individual owners
\rightarrow universe of domestic financial asset holdings
\rightarrow in 2017: $\approx 20 \%$ of nominal share capital foreign owned, value share of foreign assets $\approx 16 \%$

Auxiliary datasets

- Location of individuals (Population register)
- Firm location, age, subsidiaries, and plants by year (Firm register)
- Firm sales, profits, and other balance sheet items (Database of tax filings)
\rightarrow Spatial aggregation to county (fylker), municipality (kommuner) and basic statistical unit (grunnkretser)

Bilateral frictions

- Bilateral travel times and road distances by car: Open Source Routing Machine and Open Street Map data
- Population-weighted great circle distances
- Standards of written Norwegian: Nynorsk and Bokmål
- Municipality’s ruling party
- Social Connectedness Index from Facebook
- Broadband coverage

Ad-hoc Gravity Estimation

$$
A_{i j, t}=\exp \left(\mathbf{z}_{i j, t}^{\prime} \boldsymbol{\beta}_{z}+\lambda_{i, t}+\psi_{j, t}\right)
$$

- $A_{i j, t}$ nominal holdings of individuals from i in firms in j at time t
- $\mathbf{z}_{i j, t}$ vector of variables of interest and $\boldsymbol{\beta}_{\boldsymbol{z}}$ the respective coefficients
- $\lambda_{i, t}$ and $\psi_{j, t}$ are origin \times year and destination \times year fixed effects
- Pseudo-Poisson Maximum Likelihood estimator

	Dependent variable: Nominal holdings $\mathrm{s}_{i j, t}$			
	(1)	(2)	(3)	(4)
\log (Population Origin)	$\begin{gathered} \hline 0.652^{\star \star \star} \\ (0.128) \end{gathered}$	$(-)$	$(-)$	$(-)$
\log (Population Destination)	$\begin{gathered} 0.734^{* * *} \\ (0.122) \end{gathered}$	$(-)$	$(-)$	$(-)$
Same municipality	$\begin{gathered} 2.610^{* * *} \\ (0.456) \end{gathered}$	$\begin{gathered} 2.500^{* * *} \\ (0.415) \end{gathered}$	$\begin{gathered} 2.695^{* * *} \\ (0.471) \end{gathered}$	$(-)$
\log (Distance)	$\begin{gathered} -1.057^{\star \star \star} \\ (0.065) \end{gathered}$	$\begin{gathered} -1.271^{\star \star \star} \\ (0.066) \end{gathered}$	$\begin{gathered} -0.977^{\star \star \star} \\ (0.900) \end{gathered}$	$\begin{gathered} -0.081 \\ (0.183) \end{gathered}$
$\boldsymbol{l o g}$ (Travel Time)	$(-)$	$(-)$	$(-)$	$\begin{gathered} -0.807^{\star \star \star} \\ (0.224) \end{gathered}$
Contiguity	$(-)$	$\begin{gathered} 0.872^{\star \star *} \\ (0.186) \end{gathered}$	$\begin{gathered} 0.922^{* * *} \\ (0.294) \end{gathered}$	$\begin{gathered} 0.944^{\star \star *} \\ (0.143) \end{gathered}$
Same language	$(-)$	$(-)$	$\begin{aligned} & 0.907^{\star \star} \\ & (0.294) \end{aligned}$	$\begin{gathered} 0.157 \\ (0.110) \end{gathered}$
Same ruling party	$(-)$	$(-)$	$\begin{gathered} 0.356^{\star} \\ (0.140) \end{gathered}$	$\begin{gathered} -0.006 \\ (0.041) \end{gathered}$
Social connectedness	$(-)$	$(-)$	$\begin{gathered} 0.212^{\star \star *} \\ (0.048) \end{gathered}$	$\begin{gathered} 0.385^{* * *} \\ (0.063) \end{gathered}$
Fixed effects Sample size	$\stackrel{-}{-}$	$\begin{gathered} \hline i t, j t \\ 2,493,176 \end{gathered}$	$\begin{gathered} \hline i t, j t \\ 2,493,176 \end{gathered}$	$\begin{gathered} i t, j t \\ 2,486,847 \end{gathered}$

Notes: Intercept in column (1) is suppressed. Standard errors clustered on origin, destination, and year in parenthesis. ${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$

Ad-hoc Gravity Estimation

- Investments in home location about $\exp (2.61) \approx 13.6$ times higher than in comparable location
- 10% larger population of origin (destination) location associated with 6.5% (7.3%) larger investment
- 1% increase in distance decreases investments by about 1%
- Contiguity, language, political preferences, social connectedness matter
\rightarrow Results similar to international frictions

Information frictions

- Frictions may be related to information or communication cost
- Did better internet access reduce frictions and improve allocation of capital?
\rightarrow Idea: Exploit variation in broadband roll-out over time and space

Broadband roll-out: Share of households covered

	Dependent variable: Nominal holdings ${ }_{i j, t}$		
	(1)	(2)	(3)
log(Travel Time)	$-0.813^{\star \star \star}$	$-0.937^{\star \star \star}$	-
Contiguity	(0.126)	(0.121)	$(-)$
	$0.929^{\star * *}$	$0.896^{\star * *}$	-
Same language	(0.148)	(0.152)	$(-)$
	0.072	0.073	-
Same ruling party	(0.139)	(0.141)	$(-)$
	0.041	0.033	-
Social connectedness	(0.066)	(0.073)	$(-)$
	$0.373^{\star \star \star}$	$0.365^{\star \star \star}$	-
log(Travel Time) \times	(0.066)	(0.066)	$(-)$
Broadband coverage in origin	-	$0.126^{\star \star \star}$	$0.046^{\star \star}$
Fixed effects	$(-)$	(0.041)	(0.020)
Sample size	$i t, j t$	$i t, j t$	$i t, j t, i j$

Notes: Standard errors clustered on origin, destination, and year in parenthesis.
${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$

Related literature and context

Literature

Home and local bias in investment

- International: French \& Poterba (1991), Coeurdacier and Rey (2013),...
- Intranational: Coval \& Moskowitz (1999) — US fund holdings; Cumming \& Dai (2010) - VC; Lin \& Viswanathan, (2016), Guenther, Johan \& Schweizer (2018) - crowd funding; Grinblatt \& Keloharju (2001) - equity; Giroud (2013) - corporate investment

Structural models for gravity in international finance

- Martin \& Rey (2004,2009); Okawa \& van Wincoop (2012); Pellegrino et al. (2021)

Economic effects of the broadband expansion in Norway

- Bhuller et al. (2013), Akerman et al. (2019), Hvide et al. (2021)

Theory

Basic setup

- Economy comprised of J regions, indexed i, j
- Representative firms and representative investor in each region
- Capital only factor of production, equity only form of capital
- Firms' sales are subject to shocks, return to shares stochastic
- Investors may also invest in risk-free asset, denoted f

Investor problem

- Investor from i chooses number of shares from j to maximize lifetime utility

$$
\begin{aligned}
U_{i, t} & =E\left[\sum_{s=0}^{\infty} \beta^{s} u\left(C_{i, t+s}\right)\right] \text { s.t. } \\
C_{i, t+1} & =W_{i, t+1}-\mathbf{a}_{i, \mathbf{t}+\mathbf{1}}^{\prime} \mathbf{v}_{\mathbf{t + 1}}-a_{i, t+1}^{f} \\
W_{i, t+1} & =\mathbf{a}_{\mathbf{i}, \mathbf{t}}{ }^{\prime} \mathbf{s}_{\mathbf{t + 1}}+a_{i, t}^{f} R_{t+1}^{f}
\end{aligned}
$$

- $\mathbf{a}_{\mathbf{i}, \mathbf{t}}{ }^{\prime}=\left[a_{i 1, t}, \ldots, a_{i j, t}, \ldots, a_{i J, t}\right]$ is vector of investments in assets $j=1, \ldots, \mathrm{~J}$
- $\mathbf{v}_{\mathbf{t}}=\left[v_{1, t}, \ldots, v_{j, t}, \ldots, v_{J, t}\right]$ is vector of asset prices, $a_{i, 1}^{f}$ risk-free investment
- $\mathbf{s}_{\mathbf{t}}=\left[s_{1, t}, \ldots, s_{j, t}, \ldots, s_{J, t}\right]$ is vector of asset payoffs

Investor problem

- FOC w.r.t. $a_{i, t}^{f}$ and $a_{i j, t}: E\left[m_{i, t+1} R_{t+1}^{f}\right]=1 \quad$ and $\quad E\left[m_{i, t+1} s_{j, t+1}\right]=v_{j, t}$
- $m_{i, t+1}=\beta \frac{u^{\prime}\left(C_{i, t+1}\right)}{u^{\prime}\left(C_{i, t}\right)}$, stochastic discount factor (SDF), approximated as

$$
m_{i, t+1}=\bar{\zeta}_{i, t}+\zeta_{i, t} R_{i, t+1}^{W} \quad \text { with } \quad R_{i, t+1}^{W}=\alpha_{i, t}^{f} R_{t+1}^{f}+\boldsymbol{\alpha}_{i, t}^{\prime} \boldsymbol{R}_{t+1}
$$

- vector of portfolio shares $\boldsymbol{\alpha}_{\boldsymbol{i}, \boldsymbol{t}}^{\prime}=\left[\alpha_{i 1, t}, \ldots, \alpha_{i j, t}, \ldots, \alpha_{i j, t}\right]$ with elements $\alpha_{i j, t}=\frac{a_{i j, t} v_{j, t}}{A_{j, t}}$
- vector of gross returns \boldsymbol{R}_{t+1} with elements $R_{j, t+1}=\frac{s_{j, t+1}}{v_{j, t}}$
- value of the portfolio $A_{i, t}=\sum_{j=1}^{J} a_{i j, t} v_{j, t}+a_{i, t}^{f}$ with $\alpha_{i, t}^{f}$ share of risk-free asset
\rightarrow several assumptions consistent with specification of SDF (Cochrane, 2000)

Investor problem

- Stochastic Euler equation (FOC w.r.t. $a_{i j, t}$) can be rewritten as

$$
\frac{E_{t}\left[R_{j, t+1}\right]}{R^{f}}+\operatorname{Cov}_{t}\left[m_{i, t+1}, R_{j, t+1}\right]=1
$$

- Using SDF, latter term can be written as $\operatorname{Cov}\left[m_{i, t+1}, R_{j, t+1}\right]=\zeta_{i, t} \sum_{j^{\prime}=1}^{J} \alpha_{i j^{\prime}, t} \sigma_{j, j^{\prime}}$
- Then

$$
\begin{aligned}
\frac{1}{R^{f}} E_{t}\left[\mathbf{R}_{\mathbf{t}+\mathbf{1}}\right]+ & \zeta_{i, t} \boldsymbol{\Sigma}_{\boldsymbol{t}} \boldsymbol{\alpha}_{\boldsymbol{i}, \boldsymbol{t}}
\end{aligned}=\mathbf{1} .
$$

- $\boldsymbol{\Sigma}_{\boldsymbol{t}}$ covariance matrix of returns with elements $\sigma_{j, j^{\prime}}$

Frictions - Okawa \& van Wincoop (2012)

- Information frictions similar to Okawa \& van Wincoop (2012)
- Variance of asset j from investor i's point of view:

$$
\sigma_{j j}^{i}=\tau_{i j}^{2} \sigma_{j j}
$$

where $\sigma_{j j}$ is the actual variance of R_{j}

Frictions - Generalization

- Now: Allowing arbitrary correlations between all regions' returns
- Covariance as perceived by investor i is distorted by information frictions:

$$
\sigma_{j k}^{i}=\tau_{i j} \tau_{i k} \sigma_{j k}
$$

where $\sigma_{j k}$ denotes the actual covariance between R_{j} and R_{k}

- Covariance matrix of returns from i's point of view is then

$$
\Sigma^{\boldsymbol{i}}=\boldsymbol{T}_{\boldsymbol{i}} \Sigma \boldsymbol{T}_{\boldsymbol{i}}
$$

where $\boldsymbol{T}_{\boldsymbol{i}}$ is a diagonal matrix with element (i, j) equal to $\tau_{i j}$

Frictions - Generalization

- Portfolio shares with i-specific covariance matrix then

$$
\begin{aligned}
\boldsymbol{\alpha}_{\boldsymbol{i}, \boldsymbol{t}} & =\frac{1}{\zeta_{i, t} R_{t+1}^{f}}\left(\boldsymbol{\Sigma}_{\boldsymbol{t}}^{\boldsymbol{i}}\right)^{-1}\left(E_{t}\left[\mathbf{R}_{\mathbf{t + 1}}\right]-\mathbf{R}_{\mathbf{t}+\mathbf{1}}^{\mathbf{f}}\right) \\
& =\frac{1}{\zeta_{i, t} R_{t+1}^{f}} \boldsymbol{T}_{\boldsymbol{i}}^{-1} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{T}_{\boldsymbol{i}}^{-1}\left(E_{t}\left[\mathbf{R}_{\mathbf{t}+\mathbf{1}}\right]-\mathbf{R}_{\mathbf{t}+\mathbf{1}}^{\mathbf{f}}\right)
\end{aligned}
$$

with $\tilde{\sigma}_{i j}$ being an element of $\boldsymbol{\Sigma}^{\mathbf{- 1}}$

Bilateral investment with frictions

- Dropping time dimension, total bilateral investment then

$$
\begin{aligned}
A_{i j} & =\alpha_{i j} A_{i} \\
& =\frac{1}{\zeta_{i} R^{f}} \frac{1}{i j} c_{i j} A_{i} \\
\text { with } \quad c_{i j} & =\sum_{k} \frac{\tilde{\sigma}_{j k}\left(E\left[R_{k}\right]-R^{f}\right)}{\tau_{i k}}
\end{aligned}
$$

- Gravity-style equation, featuring two bilateral terms
- Direct frictions $\tau_{i j}$
- Indirect frictions related to the covariance of j's return with all other regions' returns

Quantification

Quantification

- Solving for model-implied bilateral frictions
- $\mathrm{J} \times \mathrm{J}$ Euler equations
- Data on the bilateral share holdings, prices, and empirical distribution of profits

Euler equations

Rewrite $J \times J$ Euler equation as

$$
\begin{aligned}
\mathrm{E}\left[R_{j}\right]-R^{f} & =\sum_{k}^{J} \dot{\tau}_{i j} \dot{\tau}_{i k} \dot{\alpha}_{i k} \tilde{\sigma}_{j k} \quad \text { where } \\
\dot{\tau}_{i j} & =\tau_{i j} \sqrt{\zeta_{i} R^{f} \alpha_{i}} \quad \text { and } \quad \dot{\alpha}_{i j}=\frac{\alpha_{i j}}{\alpha_{i}}
\end{aligned}
$$

- Normalize domestic frictions: $\tau_{i i}=1 \Rightarrow \dot{\tau}_{i i}=\sqrt{\zeta_{i} R^{f} \alpha_{i}}$ and $\tau_{i j}=\frac{\tau_{i j}}{\dot{\tau}_{i i}}$
\rightarrow Calculate $J \times J$ scaled frictions $\dot{\tau}_{i j}$ using data on $\mathrm{E}\left[R_{j}\right]-R^{f}$, $\dot{\alpha}_{i j}$

Data

- Share prices v_{j} stock exchange, over-the-counter transactions, share emissions
\rightarrow extrapolation of missing share prices via industry \times municipality FEs and firm age
\rightarrow portfolio shares $\dot{\alpha}_{i j}=\frac{v_{j} a_{i j}}{\sum_{k} v_{k} a_{i k}}$
- Expected returns $\mathrm{E}\left[R_{j}\right]=1+\frac{\bar{\pi}_{j}}{\bar{v}_{j}}$
$\rightarrow \bar{\pi}_{j} / \bar{v}_{j}$ sum of profits/market values of public firms in j, average over 10 years
- Covariance matrix of returns $\operatorname{Cov}\left[\frac{\pi_{j}}{v_{j}}, \frac{\pi_{k}}{v_{k}}\right] \forall k, j$, computed over ten years
$\begin{array}{lcc} & \begin{array}{c}\text { Dependent variable: } \\ \text { Model-implied frictions } \tau_{i j}\end{array} \\$\cline { 2 - 3 } log(Travel Time) \& $\left.0.519^{*} & 0.666^{\star *} \\ & (0.279) & (.325) \\ \text { Same County } & - & -14.126^{\star \star *}\end{array}\right\}$

Outlook: Counterfactuals

Plan for Counterfactual Analysis

Quantify impact on spatial allocation of capital, efficiency of optimal portfolio, utility

- broadband roll-out
- geography, administrative and cultural barriers, transport infrastructure investments

Conclusions

- Gravity-type frictions to investment are not an international phenomenon
- Matter just as much for domestic capital markets
- Plan: Quantify impact of broadband access

Frictions to intranational investment

NOITS 2021 Reykjavik - October 1, 2021

Inga Heiland, ${ }^{1}$ Julian Hinz ${ }^{2}$
${ }^{1}$ Statistics Norway and University of Oslo
${ }^{2}$ Bielefeld University and Kiel Institute for the World Economy

Firm problem and general equilibrium

- Firms choose inputs to maximize shareholder value net of the current cost of operating the firm
- $N_{j, t}$ number of firms in j at time t, market clearing for equity then

$$
N_{j, t}=\sum_{i} a_{i j, t} \quad \Leftrightarrow \quad N_{j, t} v_{j, t}=\sum_{i} \alpha_{i j, t} A_{i, t}
$$

- Equilibrium with free entry: willingness to pay for ownership equals cost of operating
- Equilibrium with fixed $N_{j, t}$: asset prices jointly determined by investor's Euler equation and market clearing condition

