Frictions to intranational investment

NOITS 2021 Reykjavik — October 1, 2021

Inga Heiland,¹ Julian Hinz²

¹Statistics Norway and University of Oslo ²Bielefeld University and Kiel Institute for the World Economy

- Strong gravity-like forces for intranational investment
- Exhaustive dataset and structural model
- (Plan to) run counterfactuals: Infrastructure improvements and spatial distribution of investments

- 1. Data and stylized facts
- 2. Related literature and background
- 3. Theory
- 4. Model calibration
- 5. Outlook: Counterfactuals

Stylized facts

 \rightarrow Gravity classics: Home bias, size, distance, \ldots

Financial Asset Holdings

- Norwegian equity ownership data collected by the country's tax authority
- Number of shares and their nominal value by owner, issuer
- Annual data for years between 2004 to 2017
- around 310,000 firms and around 1.02 million individual owners
- $ightarrow \,$ universe of domestic financial asset holdings
- $\rightarrow~$ in 2017: \approx 20% of nominal share capital foreign owned, value share of foreign assets \approx 16%

- Location of individuals (Population register)
- Firm location, age, subsidiaries, and plants by year (Firm register)
- Firm sales, profits, and other balance sheet items (Database of tax filings)
- → Spatial aggregation to county (*fylker*), municipality (*kommuner*) and basic statistical unit (*grunnkretser*)

Bilateral frictions

- Bilateral travel times and road distances by car: Open Source Routing Machine and Open Street Map data
- Population-weighted great circle distances
- Standards of written Norwegian: Nynorsk and Bokmål
- Municipality's ruling party
- Social Connectedness Index from Facebook
- Broadband coverage

Ad-hoc Gravity Estimation

$$A_{ij,t} = \exp\left(\mathbf{z}'_{ij,t}\boldsymbol{\beta}_{z} + \lambda_{i,t} + \psi_{j,t}\right)$$

- A_{ij,t} nominal holdings of individuals from *i* in firms in *j* at time *t*
- $\mathbf{z}_{ij,t}$ vector of variables of interest and β_z the respective coefficients
- $\lambda_{i,t}$ and $\psi_{j,t}$ are origin \times year and destination \times year fixed effects
- Pseudo-Poisson Maximum Likelihood estimator

	Dependent variable: Nominal holdings _{ij,t}				
	(1)	(2)	(3)	(4)	
log(Population Origin)	0.652***	-	-	-	
	(0.128)	(-)	(-)	(-)	
log(Population Destination)	0.734***	-			
	(0.122)	(-)	(-)	(-)	
Same municipality	2.610***	2.500***	2.695***		
	(0.456)	(0.415)	(0.471)	(-)	
log(Distance)	-1.057***	-1.271***	-0.977***	-0.081	
	(0.065)	(0.066)	(0.900)	(0.183)	
log(Travel Time)	-	-		-0.807***	
	(-)	(-)	(-)	(0.224)	
Contiguity	-	0.872***	0.922***	0.944***	
	(-)	(0.186)	(0.294)	(0.143)	
Same language	-	-	0.907**	0.157	
	(-)	(-)	(0.294)	(0.110)	
Same ruling party	-	-	0.356*	-0.006	
	(-)	(-)	(0.140)	(0.041)	
Social connectedness	-	-	0.212***	0.385***	
	(-)	(-)	(0.048)	(0.063)	
Fixed effects	-	it, jt	it, jt	it, jt	
Sample size	2,493,176	2,493,176	2,493,176	2,486,847	

Notes: Intercept in column (1) is suppressed. Standard errors clustered on origin, destination, and year in parenthesis. ***p < 0.01, **p < 0.05, *p < 0.1

Ad-hoc Gravity Estimation

- Investments in home location about $\exp(2.61)\approx 13.6$ times higher than in comparable location
- 10 % larger population of origin (destination) location associated with 6.5 % (7.3 %) larger investment
- 1% increase in distance decreases investments by about 1%
- Contiguity, language, political preferences, social connectedness matter
- ightarrow Results similar to *international* frictions

- Frictions may be related to information or communication cost
- Did better internet access reduce frictions and improve allocation of capital?
- ightarrow Idea: Exploit variation in broadband roll-out over time and space

Broadband roll-out: Share of households covered

Source: Bhuller et al. 2013

	Dependent variable: Nominal holdings $_{ij,t}$		
	(1)	(2)	(3)
log(Travel Time)	-0.813***	-0.937***	-
	(0.126)	(0.121)	(-)
Contiguity	0.929***	0.896***	-
	(0.148)	(0.152)	(-)
Same language	0.072	0.073	-
	(0.139)	(0.141)	(-)
Same ruling party	0.041	0.033	-
	(0.066)	(0.073)	(-)
Social connectedness	0.373***	0.365***	-
	(0.066)	(0.066)	(-)
log(Travel Time) $ imes$	-	0.126***	0.046**
Broadband coverage in origin	(-)	(0.041)	(0.020)
Fixed effects	it, jt	it, jt	it, jt, ij
Sample size	1,243,213	1,193,243	222,167
<i>Notes:</i> Standard errors clustered of *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$	n origin, dest	ination, and ye	ear in parenthesis.

Related literature and context

Literature

Home and local bias in investment

- International: French & Poterba (1991), Coeurdacier and Rey (2013),...
- Intranational: Coval & Moskowitz (1999) US fund holdings; Cumming & Dai (2010) VC; Lin & Viswanathan, (2016), Guenther, Johan & Schweizer (2018) crowd funding; Grinblatt & Keloharju (2001) equity; Giroud (2013) corporate investment

Structural models for gravity in international finance

• Martin & Rey (2004,2009); Okawa & van Wincoop (2012); Pellegrino et al. (2021)

Economic effects of the broadband expansion in Norway

• Bhuller et al. (2013), Akerman et al. (2019), Hvide et al. (2021)

Theory

- Economy comprised of J regions, indexed i, j
- Representative firms and representative investor in each region
- Capital only factor of production, equity only form of capital
- Firms' sales are subject to shocks, return to shares stochastic
- Investors may also invest in risk-free asset, denoted f

Investor problem

• Investor from *i* chooses number of shares from *j* to maximize lifetime utility

$$U_{i,t} = E\left[\sum_{s=0}^{\infty} \beta^{s} u(C_{i,t+s})\right] \quad \text{s.t.}$$
$$C_{i,t+1} = W_{i,t+1} - \mathbf{a_{i,t+1}' v_{t+1}} - a_{i,t+1}^{f};$$
$$W_{i,t+1} = \mathbf{a_{i,t}' s_{t+1}} + a_{i,t}^{f} R_{t+1}^{f};$$

a_{i,t}' = [a_{i1,t}, ..., a_{ij,t}, ..., a_{iJ,t}] is vector of investments in assets j = 1, ..., J
V_t = [v_{1,t}, ..., v_{j,t}, ..., v_{J,t}] is vector of asset prices, a^f_{i,1} risk-free investment
s_t = [s_{1,t}, ..., s_{j,t}, ..., s_{J,t}] is vector of asset payoffs

Investor problem

• FOC w.r.t.
$$a_{i,t}^{f}$$
 and $a_{ij,t}$: $E[m_{i,t+1}R_{t+1}^{f}] = 1$ and $E[m_{i,t+1}s_{j,t+1}] = v_{j,t}$
• $m_{i,t+1} = \beta \frac{u'(C_{i,t+1})}{u'(C_{i,t})}$, stochastic discount factor (SDF), approximated as

$$m_{i,t+1} = \overline{\zeta}_{i,t} + \zeta_{i,t} R^{W}_{i,t+1}$$
 with $R^{W}_{i,t+1} = \alpha^{f}_{i,t} R^{f}_{t+1} + \alpha'_{i,t} R_{t+1}$

- vector of portfolio shares $\alpha'_{i,t} = [\alpha_{i1,t}, ..., \alpha_{ij,t}, ..., \alpha_{iJ,t}]$ with elements $\alpha_{ij,t} = \frac{a_{ij,t}v_{j,t}}{A_{i,t}}$
- vector of gross returns \mathbf{R}_{t+1} with elements $R_{j,t+1} = \frac{S_{j,t+1}}{V_{l,t}}$
- value of the portfolio $A_{i,t} = \sum_{j=1}^{J} a_{ij,t} v_{j,t} + a_{i,t}^{f}$ with $\alpha_{i,t}^{f}$ share of risk-free asset
- $ightarrow\,$ several assumptions consistent with specification of SDF (Cochrane, 2000)

Investor problem

• Stochastic Euler equation (FOC w.r.t. *a_{ij,t}*) can be rewritten as

$$\frac{E_t\left[R_{j,t+1}\right]}{R^f} + Cov_t\left[m_{i,t+1}, R_{j,t+1}\right] = 1$$

- Using SDF, latter term can be written as $Cov \left[m_{i,t+1}, R_{j,t+1}\right] = \zeta_{i,t} \sum_{j'=1}^{J} \alpha_{ij',t} \sigma_{j,j'}$
- Then

$$\frac{1}{R^{f}} \mathcal{E}_{t} \left[\mathbf{R}_{t+1} \right] + \zeta_{i,t} \boldsymbol{\Sigma}_{t} \boldsymbol{\alpha}_{i,t} = \mathbf{1}$$
$$\iff \boldsymbol{\alpha}_{i,t} = \frac{1}{-\zeta_{i,t}} \boldsymbol{\Sigma}_{t}^{-1} \left(\frac{1}{R^{f}} \mathcal{E}_{t} \left[\mathbf{R}_{t+1} \right] - \mathbf{1} \right)$$

• Σ_t covariance matrix of returns with elements $\sigma_{j,j'}$

- Information frictions similar to Okawa & van Wincoop (2012)
- Variance of asset *j* from investor *i*'s point of view:

$$\sigma^i_{jj} = \tau^2_{ij}\sigma_{jj}$$

where σ_{jj} is the actual variance of R_j

Frictions — Generalization

- Now: Allowing arbitrary correlations between all regions' returns
- Covariance as perceived by investor *i* is distorted by information frictions:

$$\sigma^i_{jk} = au_{ij} au_{ik} \sigma_{jk}$$

where σ_{jk} denotes the actual covariance between R_j and R_k

• Covariance matrix of returns from *i*'s point of view is then

$$\Sigma^{i} = T_{i}\Sigma T_{i}$$

where T_i is a diagonal matrix with element (i, j) equal to τ_{ij}

• Portfolio shares with *i*-specific covariance matrix then

$$\begin{aligned} \boldsymbol{\alpha}_{\boldsymbol{i},\boldsymbol{t}} &= \frac{1}{\zeta_{\boldsymbol{i},t} \boldsymbol{R}_{t+1}^{\mathsf{f}}} (\boldsymbol{\Sigma}_{\boldsymbol{t}}^{\boldsymbol{i}})^{-1} \left(\boldsymbol{E}_{t} \left[\boldsymbol{\mathsf{R}_{t+1}} \right] - \boldsymbol{\mathsf{R}_{t+1}^{\mathsf{f}}} \right) \\ &= \frac{1}{\zeta_{\boldsymbol{i},t} \boldsymbol{R}_{t+1}^{\mathsf{f}}} \boldsymbol{T}_{\boldsymbol{i}}^{-1} \boldsymbol{\Sigma}^{-1} \boldsymbol{T}_{\boldsymbol{i}}^{-1} \left(\boldsymbol{E}_{t} \left[\boldsymbol{\mathsf{R}_{t+1}} \right] - \boldsymbol{\mathsf{R}_{t+1}^{\mathsf{f}}} \right) \end{aligned}$$

with $\tilde{\sigma}_{ij}$ being an element of Σ^{-1}

Bilateral investment with frictions

• Dropping time dimension, total bilateral investment then

$$A_{ij} = \alpha_{ij}A_i$$

= $\frac{1}{\zeta_i R^f} \frac{1}{\tau_{ij}} c_{ij}A_i$
with $c_{ij} = \sum_k \frac{\tilde{\sigma}_{jk}(E[R_k] - R^f)}{\tau_{ik}}$

- Gravity-style equation, featuring two bilateral terms
- Direct frictions τ_{ij}
- Indirect frictions related to the covariance of j's return with all other regions' returns

Quantification

- Solving for model-implied bilateral frictions
- * $J \times J$ Euler equations
- Data on the bilateral share holdings, prices, and empirical distribution of profits

Euler equations

Rewrite $J \times J$ Euler equation as

$$E[R_j] - R^f = \sum_{k}^{J} \dot{\tau}_{ij} \dot{\tau}_{ik} \dot{\alpha}_{ik} \tilde{\sigma}_{jk} \quad \text{where} \\ \dot{\tau}_{ij} = \tau_{ij} \sqrt{\zeta_i R^f \alpha_i} \quad \text{and} \quad \dot{\alpha}_{ij} = \frac{\alpha_{ij}}{\alpha_i}$$

- Normalize domestic frictions: $\tau_{ii} = 1 \Rightarrow \dot{\tau}_{ii} = \sqrt{\zeta_i R^f \alpha_i}$ and $\tau_{ij} = \frac{\dot{\tau}_{ij}}{\dot{\tau}_{ii}}$
- \rightarrow Calculate $J \times J$ scaled frictions $\dot{\tau}_{ij}$ using data on $\mathsf{E}[R_j] R^f$, $\dot{\alpha}_{ij}$

- Share prices v_j stock exchange, over-the-counter transactions, share emissions
- $ightarrow\,$ extrapolation of missing share prices via industryimes municipality FEs and firm age
- ightarrow portfolio shares $\dot{lpha}_{ij} = rac{v_j a_{ij}}{\sum_k v_k a_{ik}}$
- Expected returns $\mathsf{E}[R_j] = \mathbf{1} + rac{ar{\pi}_j}{ar{v}_j}$
- $\,
 ightarrow\, ar{\pi}_j/ar{ extsf{v}}_j$ sum of profits/market values of public firms in j, average over 10 years
- Covariance matrix of returns $Cov\left[\frac{\pi_j}{v_j}, \frac{\pi_k}{v_k}\right] \forall k, j$, computed over ten years

	Dependent variable: Model-implied frictions $ au$		
	(1)	(2)	
log(Travel Time)	0.519*	0.666**	
	(0.279)	(.325)	
Same County	-	-14.126***	
	(-)	(2.248)	
Contiguity	-	1.449	
	(-)	(5.531)	
Same language	-	0.506	
	(-)	(0.779)	
Same ruling party	-	1.412	
	(-)	(1.697)	
Social connectedness	-	-0.197	
	(-)	(0.741)	
Sample size	323	323	

Notes: Standard errors clustered on origin, destination, and year in parenthesis. ***p < 0.01, **p < 0.05, *p < 0.1

Outlook: Counterfactuals

_

Quantify impact on spatial allocation of capital, efficiency of optimal portfolio, utility

- broadband roll-out
- geography, administrative and cultural barriers, transport infrastructure investments

- Gravity-type frictions to investment are not an international phenomenon
- Matter just as much for domestic capital markets
- Plan: Quantify impact of broadband access

Frictions to intranational investment

NOITS 2021 Reykjavik — October 1, 2021

Inga Heiland,¹ Julian Hinz²

¹Statistics Norway and University of Oslo ²Bielefeld University and Kiel Institute for the World Economy

Firm problem and general equilibrium

- Firms choose inputs to maximize shareholder value net of the current cost of operating the firm
- N_{j,t} number of firms in j at time t, market clearing for equity then

$$N_{j,t} = \sum_{i} a_{ij,t} \qquad \Leftrightarrow \qquad N_{j,t} \mathbf{v}_{j,t} = \sum_{i} \alpha_{ij,t} A_{i,t}$$

- Equilibrium with free entry: willingness to pay for ownership equals cost of operating
- Equilibrium with fixed *N_{j,t}*: asset prices jointly determined by investor's Euler equation and market clearing condition