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Abstract

In this note we describe how the first-order conditions of fixed effects in certain

generalized linear models display a very convenient form. This can be exploited to

implement a very fast GLM estimator with high-dimensional fixed effects, as we do in

the R package glmhdfe.
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1 Introduction

We introduce a new GLM estimator implementation with high dimensional fixed effects.

The note is structured as follows. In section 2 we derive the first order conditions for the

generalized linear model yielding a convenient closed form for the fixed effects — given

other parameter estimates — for certain family-link function combinations, followed by the

description of the computation of standard errors in section 3. In section 4 we document

the R implementation in the glmhdfe package.

2 GLMs with high-dimensional fixed effects

Consider the following equation that we want to estimate:

yi = g−1
(
x′iβ +

(
dAi
)′
δA +

(
dBi
)′
δB + . . .

)
+ εi,

or in matrix form

y = g−1
(
Xβ +DAδA +DBδB + . . .

)
+ ε

= g−1(η) + ε,

such that

E(y) = µ = g−1(η) and

E(yi) = µi = g−1(ηi),

where subscript i denotes the observation, g(·) is the link function, yi denotes the depen-

dent variable, xi denotes the vector of explanatory variables with corresponding parameter

vector β, and di denoting dummies where superscripts A,B, . . . index the arbitrary number

of fixed effects. δ are the conforming parameters. εi is a remainder error term.

Using results from Nelder and Wedderburn (1972), McCullagh and Nelder (1989), and

specifically generalizing the way to write the first order conditions by Egger and Staub

(2016) to a general context with arbitrary fixed effects, we get the following first-order

conditions:

β̂ :
∑
i

yi − µi
V (yi)

∂µi

∂β̂
= 0, (1a)

δ̂a :
∑
i

yi − µi
V (yi)

∂µi

∂δ̂a
= 0, (1b)

. . .
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where δ̂a is the ath element of δ̂A.

Importantly, note that the inner derivative of µi with respect to δ̂a is always equal to dai ,

which is the ath element of dAi . Therefore, in the corresponding first-order conditions, it

will always suffice to consider the elements of the sum for which dai = 1, i.e. equation (1b)

can equivalently be written as:

δ̂a :
∑

i|dai=1

yi − µi
V (yi)

= 0. (1b)′

This property makes the computation of the fixed effects vector δ̂a dramatically less costly,

as the estimation is simply a collection of summation operations.

Following Nelder and Wedderburn (1972), β̂ can be obtained using IRLS (while updating

(1b)′ in each iteration) by:

β̂ =
[
X′WX

]−1
X′Wỹ,

with ỹi = (yi − µ̂i)
∂η̂i
∂µ̂i

+ x′iβ̂ and wii = V (µ̂i)
−1
(
∂µ̂i
∂η̂i

)2

. (2)

Note that W is a diagonal weighting matrix and hence wii refers to the elements of the

main diagonal of W. µ̂i and η̂i denote the current value in the iterative procedure.

We now explore equations (1a), (1b)’ and (2) for some specific family and link function.

2.1 Gaussian with identity link (OLS)

In the case of the Gaussian family the variance is given by V(µ) = 1. Together with an

identity link this yields the following FOCs:

β̂ :
∑
i

(
yi −

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

))
xi = 0, (3a)

δ̂a :
∑
i

(
yi −

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

))
dai = 0, (3b)

or, equivalently,

δ̂a :
∑

i|dai=1

(
yi −

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

))
= 0, (3c)

. . .
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An iteration then consists of evaluating the following equations:

β̂ =
[
X′WX

]−1
X′Wỹ, with ỹi = yi − µ̂i + x′iβ̂ and wii = 1, (3d)

δ̂a =
1

na

∑
i|dai=1

(
yi −

(
x′iβ̂ +

(
dBi
)′
δ̂B + . . .

))
, (3e)

. . .

where na =
∑

i d
a
i .

2.2 Gaussian with log link (NLS)

Combining a Gaussian family with a log link and V(µ) = 1 yields the following FOCs:

β̂ :
∑
i

(
yi − exp

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

))
× exp

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
xi = 0, (4a)

δ̂a :
∑

i|dai=1

(
yi − exp

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

))
× exp

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
= 0, (4b)

. . .

An iteration then consists of evaluating the following equations:

β̂ =
[
X′WX

]−1
X′Wỹ, with ỹi =

yi − µ̂i
µ̂i

+ x′iβ̂ and wii = µ̂2i , (4c)

δ̂a = log


∑

i|dai=1 yi exp
(
x′iβ̂ +

(
dBi
)′
δ̂B + . . .

)
∑

i|dai=1 exp
(
x′iβ̂ +

(
dBi
)′
δ̂B + . . .

)2
 , (4d)

. . .
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2.3 Poisson with log link

In the case of the Poisson family the variance is given by V(µ) = µ. Together with a log

link this yields the following FOCs:

β̂ :
∑
i

(
yi − exp

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

))
xi = 0, (5a)

δ̂a :
∑

i|dai=1

yi − exp
(
z′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
= 0, (5b)

. . .

An iteration then consists of evaluating the following equations:

β̂ =
[
X′WX

]−1
X′Wỹ, with ỹi =

yi − µ̂i
µ̂i

+ x′iβ̂ and wii = µ̂i, (5c)

δ̂a = log

 ∑
i|dai=1 yi∑

i|dai=1 exp
(
x′iβ̂ +

(
dBi
)′
δ̂B + . . .

)
 , (5d)

. . .

2.4 Gamma with log link

In the case of the Gamma family the variance is given by V(µ) = µ2. Together with a log

link this yields the following FOCs:

β̂ :
∑
i

yi − exp
(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
exp

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

) xi = 0, (6a)

δ̂a :
∑

i|dai=1

yi − exp
(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
exp

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

) = 0, (6b)

. . .

An iteration then consists of evaluating the following equations:

β̂ =
[
X′X

]−1
X′ỹ, with ỹi =

yi − µ̂i
µ̂i

+ x′iβ̂, (6c)

δ̂a = log

 1

na

∑
i|dai=1

yi

exp
(
x′iβ̂ +

(
dBi
)′
δ̂B + . . .

)
 , (6d)

. . .
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2.5 Inverse Gaussian

In the case of the inverse Gaussian family the variance is given by V(µ) = µ3. Together

with a log link this yields the following FOCs:

β̂ :
∑
i

yi − exp
(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
exp

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)2 xi = 0, (7a)

δ̂a :
∑

i|dai=1

yi − exp
(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
exp

(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)2 = 0, (7b)

. . .

An iteration then consists of evaluating the following equations:

β̂ =
[
X′WX

]−1
X′Wỹ, with ỹi =

yi − µ̂i
µ̂i

+ x′iβ̂ and wii = µ̂−1i , (7c)

δ̂a = log


∑

i|dai=1 yi/ exp
(
x′iβ̂ +

(
dBi
)′
δ̂B + . . .

)2
∑

i|dai=1 exp
(
x′iβ̂ +

(
dBi
)′
δ̂B + . . .

)−1
 , (7d)

. . .

3 Standard Errors

Standard errors can be computed after convergence of the iteration described above by

making use of the Frisch-Waugh-Lovell theorem in combination with a weighted pseudo-

demeaning to get rid of the influence of the fixed effects, similar to Gaure (2013) and

Stammann (2018). We demonstrate the procedure in the following for two sets of fixed

effects, but the procedure generalizes to an arbitrary number.

The model described above can be expressed as

√
Wỹ =

√
WXβ +

√
WDAδa +

√
WDBδb +

√
Wε,

where
√
W is the diagonal weights matrix, DA and DB are the two sets of fixed effects

with the corresponding parameter vectors δa and δb.
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The optimization problem is then

min
β,δa,δb

S =
(√
Wỹ −

√
WXβ −

√
WDAδa −

√
WDBδb

)′
(√
Wỹ −

√
WXβ −

√
WDAδa −

√
WDBδb

)
,

such that the corresponding normal equations are given by

∂S

∂β
= −X ′Wỹ +X ′WXβ +X ′WDAδa +X ′WDBδb = 0, (8)

∂S

∂δa
= −DA′Wỹ +DA′WXβ +DA′WDAδa +DA′WDBδb = 0, (9)

∂S

∂δb
= −DB′Wỹ +DB′WXβ +DB′WDAδa +DB′WDBδb = 0. (10)

Solving equation (10) for δb yields

δb = (DB′WDB)−1(DB′Wỹ −DB′WXβ −DB′WDAδa), (11)

which, putting it back into equation (8), yields

X ′W (I −DB(DB′WDB)−1DB′W )︸ ︷︷ ︸
:=PB

Xβ+

X ′W (I −DB(DB′WDB)−1DB′W )︸ ︷︷ ︸
:=PB

DAδa

=X ′W (I −DB(DB′WDB)−1DB′W )︸ ︷︷ ︸
:=PB

ỹ

⇔X ′WPBXβ +X ′WPBDAδa =X ′WPBỹ

⇔ (PBX)′W (PBX)β + (PBX)′W (PBDA)δa = (PBX)′W (PBỹ)

⇔ Ẋ ′WẊβ + Ẋ ′WḊAδ = Ẋ ′W ˙̃y, (12)

where PB is the projection matrix for DB and the ”·” superscript denotes a pseudo-

demeaning over one dimension. Analogously inserting equation (11) into equation (9)

yields

⇔ (PBDA)′W (PBX)β + (PBDA)′W (PBDA)δa = (PBDA)′W (PBỹ)

⇔ ḊA′WḊAδ + ḊA′WẊβ = ḊA′W ˙̃y. (13)

Solving equation (13) for δa yields

⇔ δa = (ḊAWḊA)−1(ḊA′W ˙̃y − ḊA′WẊβ). (14)
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Finally inserting equation (14) back into (13) yields

⇔ Ẋ ′W (I − ḊA(ḊA′WḊA)−1ḊAW )︸ ︷︷ ︸
:=PA

Ẋβ = Ẋ ′W (I − ḊA(ḊA′WḊA)−1ḊAW )︸ ︷︷ ︸
:=PA

˙̃y

⇔ (PAẊ)′W (PAẊ)β = (PAẊ)′W (PA ˙̃y)

⇔ (PA(PBX))′W (PA(PBX))β = (PA(PBX))′W (PA(PBỹ))

⇔ Ẍ ′WẌβ = Ẍ ′W ¨̃y, (15)

where PA is the projection matrix for DA and the ”··” superscript denotes a pseudo-

demeaning over both dimension.

In practice, the demeaning can be achieved via a simple iteration procedure. Call m the

pseudo-demeaned transformation of m and n the iteration. Then, starting with an initial

m0
i = mi, iterate over steps (1), (2), . . . until m(n)

i −m(n−1)
i ≤ κ

(1) m
(n)
i = m

(n−1)
i −

∑
i|dai=1wi ·m(n−1)

i∑
i|dai=1wi

(2) m
(n+1)
i = m

(n)
i −

∑
i|dbi=1wi ·m(n)

i∑
i|dbi=1wi

. . .

so that mi ≈ m̈i.

Using the demeaned Ẍ matrix, standard errors can be computed from the inverse Hessian

Ḧ−1 = γφ̂
(
Ẍ ′Ẍ

)−1
where γ is the appropriate degree-of-freedom adjustment and φ̂ is either the MM estimate

of the scale parameter or one.1

This inverse Hessian is also used to compute the robust “sandwich” errors, using the

pseudo-demeaned score vector ξ̈, where

ξi = (yi − µ̂i)
∂η̂i
∂µ̂i

.

Robust standard errors are obtained by column-wise multiplication of Ẍ with ξ̈ to obtain

1 φ = 1 for Poisson, Bernoulli, binomial and negative-binomial distributions. φ has to be estimated for
Gaussian, gamma, and inverse-Gaussian distributions, where φ̂ is given by: φ̂ = 1

N−K
∑
i

= 1N (yi−µi)
2

V (µi)
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the gradient g̈, and then multiplying

Ḧ−1g̈′g̈Ḧ−1.

Clustered standard errors are easily obtained by summing the gradient g̈ appropriately

beforehand.

4 Implementation in R and Example

We implement the procedure in R in the package glmhdfe. The package can be installed

from Github via the remotes package:

remotes::install_github("julianhinz/R_glmhdfe")

or by downloading and installing the zipped releases from https://github.com/julianhinz/

R_glmhdfe/releases. The glmhdfe function has a similar syntax as the felm function

from the lfe package and the feglm function in the alpaca package:

glmhdfe(trade ~ fta | iso_o_year + iso_d_year + iso_o_iso_d | iso_o

+ iso_d + year,↪→

family = poisson(link = "log"),

data = data)

The first part of the formula is specified as usual. The second part of the formula specifies

the fixed effects dimensions, the third part, which is optional, the clustering of the standard

errors.

4.1 Options

There are numerous options to tweak the estimation procedure:

• formula describes dependent variable, right-hand side variables of interest, sets of

fixed effects and clustering of standard errors, e.g. as

y ~ x | fe1 + fe2 | cluster1 + cluster2

• data specifies the data.table or data.frame with data used in the regression

• family specifies the estimator used, currently limited to gaussian(link = "identity") ,

gaussian(link = "log") , poisson(link = "log") , Gamma(link = "log")

• beta allows to include a vector of starting values, although, interestingly, this does

not tend to speed up the estimation

9
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• tolerance specifies the minimum change in the deviance at which the iteration

breaks

• max_iterations specifies the maximum number of iterations

• accelerate specifies whether to use an acceleration algorithm, still quite buggy

• accelerate_iterations specifies the number of iterations before starting acceler-

ation algorithm

• accelerate_aux_vector specifies whether to include the estimated fixed effects

vectors in IRLS, which, interestingly, increases convergence speed

• compute_vcov asks whether to compute the variance-covariance matrix. It can also

be computed ex-post when data from estimation provided

• demean_variables if you don’t want to compute the variance-covariance matrix

right away, do you still want to demean variables to be used in estimation of variance-

covariance matrix?

• demean_iterations specifies the number of iterations for the demeaning

• demean_tolerance specifies the minimum change in the diagonal of the Hessian at

which the demeaning iteration breaks

• include_fe asks whether the estimated fixed effects should be returned

• include_data asks whether the data used in the estimation should be returned,

which may be useful if the variance-covariance matrix will be computed ex-post

• include_data_vcov return data used in variance-covariance matrix estimation?

• skip_checks specifies, whether certain data integrity checks should be skipped

before starting the procedure. Current option to skip are the detection of separa-

tion issues ( "separation" ), multicollinearity ( "multicollinearity" ), or missing

data ( "complete_cases" )

• trace asks whether to show some information during the estimation

• verbose asks whether to show a bit more information during estimation for the

impatient

4.2 Other functions

There is also the usual battery of generic functions, like coef , summary , etc. Furthermore,

if for some reason you want to (re-)estimate the variance-covariance matrix afterwards, or

change the level of clustering, you can do so with the compute_vcov command:
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compute_vcov(data, call, info)

You need to specify the data (best in the form of a glmhdfe_data object), call (for

information on clustering and variable of interest), and info (for information on degrees

of freedom, etc.).

4.3 Speed

One advantage of separating the updating of the fixed effects from that of the other

right-hand side variables is computation time. Figures 1, 2 and 3 show the time until

convergence in seconds plotted against the number of observations in a setting with two

or three sets of fixed effects. We do so in a scenario of fitting a standard model from the

literature in international trade with a Poisson estimator. We generate the data using a

so-called structural gravity equation of international trade that relates bilateral flows to

exporter-specific, importer-specific and bilateral determinants.2 The number of observa-

tions is determined by the fixed effects dimensions of the data. In figure 1 we assume no

time dimension (and hence two sets of fixed effects) and increase the number of origin and

destinations countries at the same time from 4 to 400, generating samples with between

42 = 16 and 4002 = 160, 000 observations and up to 2 × 400 = 800 fixed effects. While

the base R command glm takes more than 10 minutes to converge for the largest of the

samples, glmhdfe still takes only around 0.8 seconds for the same task. In figures 2 and

3 we increase the sample size and number of fixed effects dramatically to showcase the

speed advantages of glmhdfe. We introduce a time dimension t fixed at 100 and increase

the number of o and d at the same time from 60 to 600. This generates samples between

360, 000 observations with 2× 60× 100+60× 60 = 15, 600 fixed effects (12, 000 in the two

way case), and 36,000,000 observations with 2× 600× 100 + 600× 600 = 480, 000 fixed

effects (120, 000 in the two way case). The figures compare the performance of different

options of the glmhdfe command.

In figures 4 and 5 we plot the seconds until convergence against the number of observations

and the number of fixed effect groups, the respective other held constant. Figure 4 holds

the number of observations fixed at 1,000,000, with the number of fixed effect groups

increasing from 2 to 500,000. Figure 5 holds the number of fixed effects constant at

50,000, but increases the number of observations from 100,000 to 5,000,000 (with roughly

equal number of observations within groups).

2See Head and Mayer (2014) for details.
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Figure 1: Time until convergence with two-way fixed effects

Figure 2: Time until convergence with two-way fixed effects

Figure 3: Time until convergence with three-way fixed effects
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Figure 4: Time until convergence with fixed number of observations and increasing
number groups

Figure 5: Time until convergence with fixed number of groups and increasing number of
observations
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A Link functions

A.1 Identity

With an identity link function, i.e. g(µ) = µ, we get the following FOCs:

β̂ :
∑
i

yi −
(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
V (yi)

xi = 0, (16a)

δ̂a :
∑

i,dai=1

yi −
(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
V (yi)

= 0, (16b)

. . .

A.2 Log

Specifying an exponential conditional mean, i.e. the log-link function g(µ) = log(µ), yields

the following general FOCs:

β̂ :
∑
i

yi − exp
(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
V (yi)

× exp
(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
xi = 0, (17a)

δ̂a :
∑

i,dai=1

yi − exp
(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
V (yi)

× exp
(
x′iβ̂ +

(
dAi
)′
δ̂A +

(
dBi
)′
δ̂B + . . .

)
= 0, (17b)

. . .
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